On the actual midterm, you will have plenty of space to put your answers. Some of these questions may be reused for the exam.

1. Write the definition of an OCAML variant type reg_exp to express abstract syntax trees for regular expressions over a base character set of booleans. Thus, a boolean is a reg_exp, epsilon is a reg_exp, the concatenation of two reg_exp's is a reg_exp, the "choice" of two reg_exp's is a reg_exp, and the Kleene star of a reg_exp is a reg_exp.
2. Given the following OCAML datatype:
type int_seq $=$ Null I Snoc of (int_seq *int)
write a tail-recursive function in OCAML all_pos : int_seq -> bool that returns true if every integer in the input int_seq to which all_pos is applied is strictly greater than 0 and false otherwise. Thus all_pos ($\operatorname{Snoc}(\operatorname{Snoc}(\operatorname{Snoc}(\mathbf{N u l l}, 3), 5), 7))$ should returns true, but all_pos $(\operatorname{Snoc}(\mathbf{N u l l}, \mathbf{1}))$ and all_pos $(\operatorname{Snoc}(\operatorname{Snoc}(\mathbf{N u l l}, \mathbf{3}), \mathbf{0}))$ should both return false.
3. Given a polymorphic type derivation for
$\} \mid$ - let pair $=$ fun $x->(x, x)$ in pair(pair 3$):(($ int * int $) *($ int * int $))$
4. Give a (most general) unifier for the following unification instance. Capital letters denote variables of unification. Show your work by listing the operation performed in each step of the unification and the result of that step.

$$
\{\mathrm{X}=\mathrm{f}(\mathrm{~g}(\mathrm{x}), \mathrm{W}) ; \mathrm{h}(\mathrm{y})=\mathrm{Y} ; \mathrm{f}(\mathrm{Z}, \mathrm{x})=\mathrm{f}(\mathrm{Y}, \mathrm{~W})\}
$$

5. For each of the following descriptions, give a regular expression over the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, and a regular grammar that generates the language described.
a. The set of all strings over $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$, where each string has at most one \mathbf{a}
b. The set of all strings over $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$, where, in each string, every \mathbf{b} is immediately followed by at least one \mathbf{c}.
c. The set of all strings over $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$, where every string has length a multiple of four.
6. Consider the following grammar:

$$
\begin{aligned}
& <\mathrm{S}>::=<\mathrm{A}>\mid<\mathrm{A}><\mathrm{S}> \\
& <\mathrm{A}>::=<\mathrm{Id}>\mid(<\mathrm{B}> \\
& <\mathrm{B}>::=<\mathrm{Id}>\mathrm{I}|<\mathrm{Id}><\mathrm{B}>|(<\mathrm{B}> \\
& <\mathrm{Id}>::=0 \mid 1
\end{aligned}
$$

For each of the following strings, give a parse tree for the following expression as an $<S>$, if one exists, or write "No parse" otherwise:
a. $(01(1)((10] 1$
b. 0 (10 (1]
c. $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right] 0$]
7. Demonstrate that the following grammar is ambiguous (Capitals are non-terminals, lowercase are terminals):

$$
S::=A \text { a B } \| B a A
$$

$$
\begin{aligned}
& \mathrm{A}::=\mathrm{b} \mid \mathrm{c} \\
& \mathrm{~B}::=\mathrm{a} \mid \mathrm{b}
\end{aligned}
$$

8. Write an unambiguous grammar generating the set of all strings over the alphabet $\{0,1,+,-\}$, where + and - are infixed operators which both associate to the left and such that + binds more tightly than -.
9. Write an ocamlyacc parser for the language

$$
<\mathrm{S}>=<\mathrm{V}>\mid \text { fun }<\mathrm{V}>-><\mathrm{S}>\mid<\mathrm{S}><\mathrm{S}>
$$

where $\langle\mathrm{V}\rangle$ is any identifier, application ($\langle\mathrm{S}\rangle\langle\mathrm{S}\rangle$) associates to the left and has higher precedence than fun $\langle\mathrm{V}\rangle-\rangle\langle\mathrm{S}\rangle$. You should include in your header one or more datatypes for the abstract syntax trees of the language. You declarations should give the constructors for the datatype token of the tokens input into the parser.

